
www.manaraa.com

Distributed Data Storage with Strong Offline Access
Support

Luká̌s Hejtḿanek∗
∗Faculty of Informatics,

Masaryk University,
Botanicḱa 68a, 602 00 Brno,

Czech Republic
e-mail: xhejtman@mail.muni.cz

Luděk Matyska∗†
†Institute of Computer Science,

Masaryk University,
Botanicḱa 68a, 602 00 Brno,

Czech Republic
e-mail: ludek@ics.muni.cz

Abstract— In this paper, we propose a distributed data stor-
age framework that supports unrestricted offline access. The
system does not explicitly distinguish between connected and
disconnected states. Its design is based on a lock-free distributed
framework that avoids update conflicts through file versioning.
The feasibility of this framework is confirmed by a proof-of-
concept implementation. We also demonstrate that the proposed
lock-free replica synchronization algorithm scales well. A future
work will include also direct support for non-versioned files.

I. I NTRODUCTION

As the mobility is becoming a more and more important
aspect of work pattern of contemporary users, the ways in
which data is processed in a distributed system that supports
mobility are gaining more practical interest. When considering
mobility, we expect mobile clients to be connected to the
network from different places. However, as the network is not
yet omnipresent and does have very differing properties at
different places, we have to consider situations when network
is not available—users have to work in a disconnected mode—
or network has very limited throughput or very high latency
(e.g., when using the GPRS). The distributed data storage must
be able to support usual work patterns even in such cases,
hiding the actual network quality (or even existence) from the
users as much as possible.

The primary goal of our work is to present a distributed data
storage system which does not distinguish between connected
and disconnected states and in fact operates only in one
(disconnected) mode. Our secondary goal is to present a
system which does not need to use locking and we demonstrate
that this is the needed property to fulfill our primary goal. We
propose fast lock-free synchronization algorithm and we avoid
update conflicts using file versioning.

Ficus [7] and Coda [12] are prominent examples of systems
that introduced the so called disconnected operations. The
Coda system distinguishes whether the client is connected
or disconnected. The Ficus system supports primarily discon-
nected mode [8] but uses complex synchronization algorithms
and does not support file versioning. File versioning is popular
in the programming and text/file editing fields and is usually
supported at the application level through tools like CVS [3],
SVN [4], or GIT [6]. Recently, file versioning has begun

to be popular also in the field of computer graphics, with,
e.g., Adobe Version Cue [1] which is an application-level file
versioning tool. These systems usually support disconnected
operations (e.g., editing a file independently and making
explicit synchronization with the server) and their supported
modes of operations are very similar to the use of file systems
in disconnected state.

The rest of this paper is organized as follows. In Section II,
we discuss problems related to data replication, file version-
ing, and problems related to offline support. Architecture of
the proposed framework is presented in Section III. This is
followed, in Section IV, by the information about a prototype
implementation and first experimental results. Section V sum-
marizes related work and Section VI gives concluding remarks
and work summary.

II. D ISTRIBUTED SYSTEMS

In this section, we discuss some common problems related
to distributed storage systems with replication and offline
support and concurrent versions system with replication. We
use a distributed system model with a set of participants.
Each participant can communicate directly with others. Each
participant is either running or down. We allow services and
data to be replicated between participants, i.e., services or data
are redundantly hosted by multiple participants.

To distinguish individual objects moving in a distributed
system, some global unique identification is needed. Three
different approaches are usually used for such a purpose:
centralized service, peer to peer approach, and standalone.
The first two approaches rely on availability of either the
central service or the peers at the moment of issuing the unique
identifier. This requirement is not valid for our situation when
new object can be created in a disconnected state. Therefore,
only the standalone approach is usable for offline clients, as it
does not need contact with any other participant or third party
service.

As a disconnected client re-connects to the network, some
synchronization must happen between the client and the
distributed system. We will describe here the basics of the
well known Two-Phase Commit Protocol, as its modification
is used in our synchronization algorithm. We have a set of



www.manaraa.com

participants that can commit or abort a transaction. If all
participants commit then the result is to commit. If any of
the participants aborts then the result is to abort. Two-phase
commit protocol (2PC) decides whether to abort or to commit.
The 2PC consists of two parts. The first, message “prepare
to commit” is broadcasted to all participants by one of the
participants. If any of the participants does not answer until
certain timeout (broadcast message is lost or a participant
is down) then the result is abort. After collecting answers
with to commit or to abort, the second part is started by
broadcasting the result. The second broadcast is supposed to
be a reliable broadcast. If initiator of the transaction does not
receive acknowledgement of the second phase from any of
the participants than it is up to the initiator to retransmit the
request of the second phase.

A. Distributed Data Systems and Replication

Large scale distributed systems are prone to failures. If we
are given a distributed system consisting of hundreds or even
thousands of elements, it is almost certain that some elements
are non-operational. If we are to secure a reliable service, the
possible way out lies in replication. We can replicate elements
or services, in the case of data systems, we replicate storage
servers or orthogonally we can replicate stored data. We are
using data replication.

Data replication strategies [11] can be divided into two
groups. The first, pessimistic replication strategy blocks update
operations until the update is spread over all replicas. The
second, optimistic replication strategy does not block update
operations and spreading is not synchronous with update.
Consequently, the pessimistic replication strategy can have
performance problems due to blocking operations but it guar-
antees coherency of data. The optimistic replication strategy
does not guarantee coherency of data immediately after update
operation but it can be faster then the pessimistic approach.

B. Distributed Storage with Offline Access Support

We adopt a model which consists of online servers and
possibly offline clients. The servers are all interconnected, the
clients can connect to and disconnect from network at any
time. The disconnected clients use prefetch cache to be able
to read data and write back cache to store updated data. Write
back cache is synchronized with servers after the transition
from disconnected to connected state. Write back cache can
serve as prefetch cache in the case of reading previously stored
data.

1) Update Conflicts:We denote a situation when two or
more distinct clients want to update the same data as anupdate
conflict. If all clients are online then the update conflict is
usually solved by last-writer-wins rule or system avoids update
conflicts using data locks.

If the client has updated data while being disconnected then
update conflicts may occur after the transition to connected
state. In such a case, last-writer-wins rule is ambiguous
because the time stamp bound to the update relies on real time
clock of the client. However, it is infeasible to synchronize

real time clock of all participants in distributed environment
with offline support. Moreover, the updates are committed
after transition from disconnected to connected state. The time
order of commits may not be the same as the time order
of updates. For usage of distributed data locking client must
not be faulty (including disconnected state) or the client must
periodically refresh soft-locks. If we do not bind upper bounds
with duration of disconnected state then soft-locks cannot
be used, otherwise we have problems with clients that are
disconnected for too long.

2) Name Conflicts:Traditional file systems use full file
name (i.e., a file name together with a path) as an unique
and immutable identification of the file. Consequently, these
file systems prohibit the creation of two or more identical full
file names for different files.

Introducing disconnected state, system is unable to prevent
creation of multiple identical full file names because full file
names are client generated. We are unable to check full file
names created in disconnected state. The name conflicts may
occur after transition from disconnected to connected state
if we allow to create and rename files in the disconnected
state. Moreover, file creation or file renaming are synchronous
operations expecting result state which is unknown until
transition to connected state.

C. Concurrent Versions System with Replication

We use model of a file system with versioned files. Besides
traditional directory structure, we bind a version number to
every file. A single file may have several distinct versions and
each file version is immutable. Update made to a particular file
version results in a new file version that is further immutable.
We extend this model using replication: we use a file with
all its versions as an independent replication unit and updates
may be performed on any of the replicas.

File replication of immutable files does not pose problem
with conflicting updates because every file is unique and
once written, it may receive no updates. However, the update
conflicts return if we introduce file versioning together with
immutable files as versions conflict. Replication algorithm
must spread new file versions across replicas and spreading
file versions may result in versions conflict.

More precisely, denote a setF = {f1, . . . , fn} of versions
of a particular file that are spread over all replicas. Assume
that versionfn+1 is created on the replicaR1 and version
f ′

n+1 is created on the replicaR2. Both fn+1 and f ′
n+1 are

versions with the same version number of the same file but
they may have different content. We denote such a situation
asversion conflict.

III. A RCHITECTURE DESIGN

Model of our distributed file system consists of intercon-
nected storage servers and clients that connect and disconnect
at their will. We do not distinguish between connected and
disconnected clients. As we discussed in the previous sec-
tions, disconnected clients cannot use data locking and thus
our model avoids data locking completely. The disconnected



www.manaraa.com

clients use prefetch cache to be able to read data and write back
cache to store updated data. Write back cache is synchronized
to servers after the transition from disconnected to connected
state. Prefetch and write back cache stores data blocks instead
of whole files. File consists of two parts: metadata and data.
Data is stored in blocks of variable length, once stored data
block is further immutable. The metadata resembles standard
UNIX I-Node, as it contains references to particular data
blocks, their offsets in the file and lengths. The metadata
supports replication of data blocks, i.e., particular offset
may be referenced by multiple data blocks. The metadata is
maintained in a directory structure. Files can exist in several
file versions. Every file version is immutable, an update of
a file creates a new file version. We adopt the so called
open-close semantics where metadata of a particular file is
published to network after the file closing. Consequently, a
new file version arises after the file is closed. Every file
version is given an UUID (Universally Unique IDentifier,
represented by 16 bytes long number) [10] at the time of
version creation. Algorithm used for UUID generation gives
with high probability globally unique identifiers. A file with all
versions forms independent replication unit, every file can be
replicated. Replication model embodies multiple master (peer
to peer) approach, i.e., no replica has master role, and all
replicas are read-write accessible. Each replica is given an
UUID. Each replica knows all other replicas. Replication is
performed by a storage server.

A. Update Conflicts

As we presented in Section II-B.1, systems with offline
support may suffer from update conflicts. Our model is based
on immutable files. As immutable file cannot be changed, we
completely avoid update conflicts.

B. Name Conflicts

We discussed in Section II-B.2 that systems with offline
support may have problems with name conflicts. As we already
mentioned, the file creation and file renaming are synchronous
operations expecting result status synchronously but the result
status is unknown till transition to the connected state. We use
optimistic approach which means that if a new file name is
not conflicting with cached file names then it is not globally
conflicting. Using this approach, we keep synchronous nature
of creating and renaming operations but we do not completely
avoid name conflicts. If a conflict occurs after transition to the
connected state, we change the conflicting name. E.g., let us
assume that offline client creates a filefile.1 . After transi-
tion to the connected mode, the metadata of the filefile.1
is stored on metadata manager but let us assume that there al-
ready exists a file of the same name. In such a case, client’s file
file.1 is renamed tofile.1#1 . Consequently, the client
cannot use file names as immutable identifier because system
may change the file names without all users notification. In
our example, the client may not usefile.1 for the file
identification because it was changed tofile.1#1 in back-
ground. We resolve such situation by binding globally unique

identifier [10] to each file (and a particular version) using
which the user is able to access file directly without specifying
path and the file name. E.g., we bind UUIDccb8c47c-
709c-40a9-906e-8383aacef173 with file.1#1 . Us-
ing this identifier, the file is always accessible regardless of
its actual name. The user can always access the file using
the file “name” ?uuid=ccb8c47c-709c-40a9-906e-
8383aacef173 . However, using UUID for accessing files
is not user friendly and thus we support the use of ordinary
file names for accessing files for most cases. In addition, we
presentcheckpointswhich are natural numbers bound to every
file and initially set to zero. If a checkpoint of any file is non-
zero then we guarantee that file name (including file version)
will not be changed by the system.

C. Replication

Using our model, replication is done at two levels: data
replication and metadata replication. For data replication,
we can easily adopt optimistic replication strategy because
our model assumes that stored data blocks are immutable.
Consequently, no update conflict can occur. We allow up-
dates of immutable files using file versioning. Replication of
versioned files does not pose update conflicts as versioned
files are immutable. However, version conflicts as discussed in
Section II-C may occur. We solve this problem by proposed
replica synchronization algorithm which is presented in the
following section.

D. Replica Synchronization Algorithm

Our proposed replica synchronization algorithm is based on
the well known 2PC algorithm. As we mentioned, a single
file with all its versions is an independent replication unit,
therefore we can use abstraction of a single file.

For a fileF , we denote a setRF = {R1, . . . , Rn} as the set
of replicas that store the fileF . A single file is an independent
replication unit and a replication of a single file does not
depend on other files. We denote file versions of a single file as
a setV = {v1, . . . , vm}. We denote a setVRi

= {vi
1, . . . , v

i
p}

as the set of file versions that are stored on a replicaRi. The
setVRi

does not always contain all the file versions which is
a consequence of asynchronous version synchronization. We
denote ancestor functionπ(vi

j).
For each setVRi

, we define a numberCRi
∈ N0 and a

set Ai = {vi
j ∈ VRi

| j ≤ CRi
}. We define thatvi

j = vk
j

if and only if the file versionvi
j has the same UUID as the

file versionvk
j . We call theCRi

a checkpointif and only if
CR1 = CR2 = . . . = CRn

∧ A1 = A2 = . . . = An, i.e., all
the replicas are synchronized. Initially, we setCR1 = CR2 =
. . . = CRn = 0. In the following text,Checkpoint denotes
single maximal checkpoint, i.e., the maximalCRi

for which
holdsCheckpoint = CR1 = CR2 = . . . = CRn

∧A1 = A2 =
. . . = An.

We define two operations that are requested by the client
and performed by the replica.



www.manaraa.com

1) Create(Ri)—creates initial versionvi
1 of a file on a

replica Ri. Operation fails if initial versionvi
1 already

exists. We defineπ(vi
1) = nil.

2) Update(vi
j)—creates a new file version derived from

a single file of versionvj on replica Ri. Operation
Update(vi

j) on non-existing versionvi
j fails. We define

π(Update(vi
j)) = vi

j .

After any of these operations, replica synchronization algo-
rithm must be started and it is asynchronous to these oper-
ations. A client may request multiple operations on multiple
replicas at once. Consequently, multiple instances of replica
synchronization algorithm may be synchronizing a single file.
Such a situation must be detected and resolved because only
one coordinator for a single file can exists to make this
algorithm work correctly.

The setVRi is built during synchronization or using opera-
tions Create() andUpdate(). The setVRi

forms a tree with
the rootvi

1 using ancestor functionπ().
The replica that has performed operationCreate() or

Update() is the coordinator of the synchronization algorithm.
We remind that each replica knows all the other replicas. If
any replica receives requests from different coordinator while
synchronization algorithm has not finished then concurrent run
of synchronization algorithm is detected. Leader is elected
from all concurrent coordinators using UUIDs of replicas—
the replica with a maximal UUIDs is the leader. The leader
proceeds with the synchronization algorithm. Behavior of the
other coordinators depends on performed operations as shown
below.

Goal of the synchronization algorithm after operation
Create() is to spread newly created version across all replicas.
Name collision may occur if initial file version already exists
on any replica. In such a case, the newly created file must
be renamed. The synchronization algorithm has two parts:
(1) replicas lock and (2) file distribution.

1) Coordinator requests all replicas to prevent further cre-
ation of the given file. If any of replicas already has the
file then coordinator renames the newly created file and
terminates. Rename operation actually triggersCreate()
operation on a different file.

2) Coordinator spreads the newly created file between
replicas.

Goal of the synchronization algorithm after operation
Update() is to synchronize file versions. In the case of con-
current coordinators, the non-leader coordinators terminate the
synchronization algorithm. The synchronization algorithm has
two parts: (1) snap-shooting replicas and (2) a synchronization.
We assume that coordinator is running from replicaRj .

1) Coordinator of a synchronization obtains setsBi =
{vi

j ∈ VRi
| j > Checkpoint} for all Ri ∈ RF , i.e., Bi

contains all file versions which version number is higher
thenCheckpoint . This is done by sending request by a
coordinator to other replicas.

2) Coordinator (running on replicaRj) creates a setV ′

by merging all the setsBi (see the Figure 1). All file

versions with parents not present inAj (a set with
already synchronized file versions) norBi are omitted
from merging. The setV ′ is distributed to all replicas.
Each replica computes the newCRi

value according to
the setV ′. All file versions that are not present in the set
V ′ are given a new version higher then theCheckpoint .

1 proc Merge(Checkpoint , B1, . . . , Bn)
2 B := B1 ∪B2 ∪ . . . ∪Bn

3 B′ := ∅
4 V ′ := ∅
5 x := Checkpoint + 1
6 foreach vi

j ∈ B do
7 if ∃vk

l ∈ B′ | vi
j

.= vk
l

8 then
9 foreach v such thatπ(v) = vi

j do
10 π(v) := vk

l

11 od
12 else
13 B′ := B′ ∪ {vi

j}
14 vx := vi

j

15 V ′ := V ′ ∪ vx

16 x := x + 1
17 fi
18 od
19 Checkpoint := x
20 return(V ′)
21 end

Fig. 1. Merge operation. We definevi
j

.
= vk

l iff the file versionvi
j has the

same UUID as the file versionvk
l .

The 2PC algorithm aborts if one of the participants is down
(non operational). However, such behavior is problematic in
large distributed systems where the probability of any node
going unexpectedly down (or being disconnected) is too high.
Therefore, we bind a time limit on request in phase 1. Replicas
not answering within the time limit are considered to be down.
When a crashed replicaRi is operational again then it fetches
and merges file versions in the range(CRi

,Checkpoint >
from other replicas and then it starts the synchronization
algorithm.

To perform the phase 2, more then half of replicas must be
operational. If this precondition is not met, then all replicas
are unblocked and the synchronization is postponed. This
precondition is needed to guarantee that file versions less
than checkpoints will not be changed by subsequent merging
operations.

IV. PROTOTYPEIMPLEMENTATION

Our proof-of-concept implementation splits data storage
into two independent parts: data and metadata. The data is
stored using logistical networking approach [2]. The metadata
is handled by our metadata manager. The metadata manager
supports the following operations:create , update , and
list . The create operation creates initial version of a file



www.manaraa.com

and replicates metadata between replicas. Replication is done
asynchronously. Theupdate operation creates a new version
of a given file and runs asynchronously the proposed replica
synchronization algorithm. Thelist operation returns a list
of files that are stored on a particular replica.

Our prototype implementation is done in C language and
provides standard UNIX I/O API.Open, Close , Read,
Write , and Seek operations are supported. We also have
a preliminary implementation using FUSE [5] providing a
generic file system for the Linux operating system.

Preliminary experiments have been run on several servers
equipped with Pentium 4@2.0 GHz processors, 1 GB RAM,
and 1 Gbps NIC. The results show good scaling of the syn-
chronization algorithm which can be seen in the Figure 2. The
Figure shows duration of the synchronization algorithm which
was triggered by operation update. Number of transfered
messages is linearly dependent on the number of replicas:

messages = replicas ∗ 4 + newversions − 1

where themessagesis total the number of transfered messages,
the replicas is the number of participating replicas, and the
newversionsis the number of unsynchronized versions of
the file. Number of transfered messages is derived from
implementation of the algorithm.

We have done some preliminary performance tests which
show that extracting the sources of Linux kernel (ap-
prox. 250 MB total in approx. 18000 files) is quite comparable
to NFSv3.

1 2 3 4 5 6
Number of replicas

0

10

20

30

40

50

T
im

e 
in

 m
ill

is
ec

on
ds

Fig. 2. Scaling of the synchronization algorithm

V. RELATED WORK

We discuss systems that provide either offline support and/or
file versioning. The CVS [3] system provides file versioning
and offline support, but it is not a distributed system when we
consider the way server storage is organized. The GIT [6]
is a distributed approach to file versioning similar to the
CVS. Instead of simple file versions, it uses hash values to
identify particular file versions to simplify distributed design.
Users can access particular file versions using the hash values
which makes it more difficult than using natural numbers.
Natural numbers allow easier identification of particular file
versions. Our proposed approach uses natural numbers to

identify file versions while preserving distributed approach and
using UUID to uniquely identify individual files. The Ficus [7]
file system aims to be very large-scale replicated distributed
file system, it uses optimistic replication strategy [11] and
allows to operate in disconnected mode [8]. However, the
Ficus does not provide file versioning, requiring rather com-
plex synchronization algorithm to solve the update conflicts.
Another limitation of the Ficus is that it does not support large
files as it uses NFSv2 as transport and storage layer. The Coda
file system [12] is a heir to AFS file system, it provides full
replicas (read/write), provides disconnected operations, and it
is also using optimistic replication strategy. Update conflicts
are detected and either automatically resolved or reported to
the user. However, nor the Coda file system provides file
versioning, and it uses leases (which are basically time-limited
locks) to maintain cache coherency.

Similar approach has been studied to support disconnected
operations also in AFS [9]. It is based on journaling operations
performed when connection to a file server is unavailable.
When the connection is available, the journal is replayed
and possible conflicts are reported to the user. However, this
attempt has never been adopted by AFS community.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we propose a distributed framework capable of
file versioning in the way of CVS while being fully distributed
and replicated. Together with file versioning, our system
possesses strong offline support, i.e., we do not distinguish
between connected and disconnected state. We have designed
a prototype implementation and performed preliminary exper-
iments. The results show that idea of strong offline support
and simple file versioning is feasible and our proposed replica
synchronization algorithm scales well. We have done some
preliminary performance tests which show that our framework
is quite comparable to NFSv3.

Our further work is directed to support work with non-
versioned files including algorithms for distribution of updates
and conflicts resolution. We relax open-to-close semantics of
access to non-versioned files. We also plan to support more
operations on the metadata manager to meet the requirements
of fully compliant POSIX I/O interface.

ACKNOWLEDGMENTS

This research is supported by a research intent “Optical
Network of National Research and Its New Applications”
(MŠM 6383917201) and by the CESNET Development Fund
project 172/2005. We would also like to thank to David
Antoš and Petr Holub for kindly supporting our work and
for stimulating discussions.

REFERENCES

[1] Adobe Version Cue.http://www.adobe.com/products/
creativesuite/versioncue.html .

[2] M. Beck, T. Moore, and J. S. Planck. An end-to-end approach to
globally scalable network storage. InSIGCOMM’02, 2002.

[3] B. Berliner and J. Polk. Concurrent Versions System (CVS), 2001.
http://www.cvshome.org .



www.manaraa.com

[4] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato.
Version Control with Subversion, 2004.
http://svnbook.red-bean.com/en/1.0/svn-book.html .

[5] FUSE: Filesystem in Userland.
http://fuse.sourceforge.net .

[6] GIT – Fast Version Control System, 2005.http://git.or.cz/ .
[7] Richard G. Guy. Ficus: A Very Large Scale Reliable Distributed File

System. Technical Report CSD-910018, Los Angeles, CA (USA),
1991.

[8] John S. Heidemann, Thomas W. Page Jr., Richard G. Guy, and
Gerald J. Popek. Primarily disconnected operation: Experiences with
ficus. In Workshop on the Management of Replicated Data, pages 2–5,
1992.

[9] L. B. Huston and P. Honeyman. Disconnected operation for AFS. In
Proceedings of the USENIX Mobile and Location-Independent
Computing Symposium, pages 1–10, Cambridge, MA, 1993.

[10] P. Leach, M. Mealling, and R. Salz. RFC4122: A Universally Unique
IDentifier (UUID) URN Namespace, 2005.
http://www.ietf.org/rfc/rfc4122.txt .

[11] Yasushi Saito and Marc Shapiro. Replication: Optimistic Approaches.
Technical report, HP Laboratories Palo Alto, 2002.http://www.
hpl.hp.com/techreports/2002/HPL-2002-33.html .

[12] M. Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki,
Ellen H. Siegel, and David C. Steere. Coda: A highly available file
system for a distributed workstation environment.IEEE Transactions
on Computers, 39(4):447–459, 1990.


